Rates of Solvolysis of 2-Methyl-, 2-tert-Butyl-, 2-Phenyl-, and 2-Cyclopropyl-2-propyl p-Nitrobenzoates. Evidence That ^{13}C Chemical Shifts of Carbonium Ions Do Not Correlate with the Stabilities of Solvolytic Transition States and the Corresponding Cationic Intermediates

Sirs:

The rates of solvolysis in 80% aqueous acetone of the esters $\text{RM}_{2}\text{COPNB}$ exhibit major increases as the group R is varied from methyl (1.00) to phenyl (10.2) to cyclopropyl (10.8). Relief of B strain is not a significant factor in these derivatives. Yet these rates fail to correlate with the ^{13}C chemical shifts for the carbonium carbon of the respective cations of -135, -61, and -87 ppm. Consequently, it does not appear possible at this time to base conclusions as to the rates of solvolysis, the electron-releasing properties of substituents, or the relative stabilities of carbonium ions on such ^{13}C shifts.

Ever since the pioneering work of Ingold on solvolysis, rates of SN1 reactions have been utilized by chemists to obtain information as to the factors influencing the stabilities of carbonium ions and the electronic distributions in such ions. Recently, it has been stated that there is a well-established relationship between ^{13}C chemical shifts and electron density in such ions. Obviously, it would be highly desirable to have available a relatively direct means of determining the electron density at various carbon atoms of a carbonium ion, rather than having to rely on deductions from solvolytic data.

For example, Olah and his coworkers have examined the ^{13}C chemical shifts for the carbonium carbon in the tert-butyl cation, the phenylidemethyl- and the cyclopropylidemethylcarbonium ions and have concluded from the observed values that the phenyl group must be more electron releasing than the cyclopropyl group.

This is contrary to the conclusion that is indicated by solvolytic results. Thus, the relative rates of solvolysis of para-substituted tert-cumyl chloride derivatives $\text{C}_\text{H}_3\text{C}$-$\text{C}$-$\text{CH}_2\text{CH}=\text{OPNB}$ involving significant steric effects, the most important factor influencing the stabilities of the respective transition states. According to the Hammond postulate, such transition states are close to the carbonium ion intermediates, so that the stabilities of the latter can be estimated from the rate data. Perhaps systems not involving significant steric effects, the most important factor influencing stability of the cation is electron delocalization from the carbonium ion center.

Before we can proceed to interpret these results, it is necessary to establish that differences in B strain are not a significant factor in the observed rates. A tert-butyl group must have larger steric requirements than a methyl, phenyl, or cyclopropyl group. Solvolysis of tert-butylidemethylcarbiny1 p-nitrobenzoate (7) yields a rate 4.4 that of the tert-butyl derivative. Clearly, relief of B strain cannot represent a major contribution in the factors of 969 and 503,000 observed for the respective effects of a phenyl and cyclopropyl group in the corresponding derivatives.

Journal of the American Chemical Society | 95:7 | April 4, 1973
The rate constants and related data are summarized in Table I.

Table I. Rate Data for the Solvolysis of Tertiary 2-Propyl
p-Nitrobenzoates, R(CH3)2CONPB, in 80% Acetone

<table>
<thead>
<tr>
<th>R</th>
<th>k_1 $\times 10^4$, sec$^{-1}$</th>
<th>Rel rate, 25°</th>
<th>ΔH°, kcal mol$^{-1}$</th>
<th>ΔS°, eu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyla</td>
<td>7.45 $\times 10^{-5}$</td>
<td>1.00</td>
<td>29.2</td>
<td>-7.1</td>
</tr>
<tr>
<td>tert-Butylb</td>
<td>3.25 $\times 10^{-5}$</td>
<td>4.36</td>
<td>29.0</td>
<td>-4.8</td>
</tr>
<tr>
<td>Phenyl4</td>
<td>7.22 $\times 10^{-5}$</td>
<td>969</td>
<td>24.8</td>
<td>-8.2</td>
</tr>
<tr>
<td>Cyclopropyld</td>
<td>37.3 $\times 10^4$</td>
<td>503.000</td>
<td>20.8</td>
<td>9.0</td>
</tr>
</tbody>
</table>

d Calculated from data at other temperatures. k_1 $^{105} = 814 \times 10^{-6}$ sec$^{-1}$; k_1 $^{108} = 89.6 \times 10^{-6}$ sec$^{-1}$.

Since differences in the ground-state energies are not significant in the tert-butyl and tert-cumyl derivatives, the factor of 105 in rates indicates that the transition state of the tert-cumyl derivative is stabilized by approximately 4 kcal mol$^{-1}$. The stabilization of the free ion is presumed to be modestly larger. This stabilization is presumed to be due to charge delocalization from the carbonium center into the aromatic ring 8.

Indeed, the large rate enhancement effects of methyla (X26) and methoxyb (X3360) substituents in the para position support this interpretation.

Similarly, the large rate enhancing effect of the cyclopropyl group (105) indicates that the transition state is stabilized by approximately 7.5 kcal mol$^{-1}$. This stabilization must also be the result of major charge delocalization from the carbonium center into the cyclopropyl ring. Indeed, here also large rate enhancing effects, following σ+, have been observed for methyl (X11) and ethoxy (X940) substituents in the cyclopropyl ring.

The major increase in rate observed for the cyclopropyl derivative 6, as compared to the phenyl derivative 5, indicates that more charge must be delocalized from the carbonium carbon in 6, as compared to 5. If the 13C shifts measure the electronic densities on the individual carbon atoms, one would have anticipated a larger 13C shift for the carbonium carbon in the ion from 6 as compared to that from 8. The fact that the magnitude of the 13C shift occurs in the opposite direction led Olah and his coworkers to conclude that phenyl is a better electron-releasing group than cyclopropyl, a conclusion directly opposite to that indicated by the present solvolytic study, as well as by other approaches.

Clearly it is desirable that we proceed with caution in basing conclusions as to electron densities on carbon atoms on 13C shifts alone until this major discrepancy is resolved.11

(11) Other discrepancies are evident. For example, the rates of solvolysis of 1-methylcyclopentyl (1.00) and 2-methyl-exo-norbornyl p-nitrobenzoates (4.0) are comparable: H. C. Brown, F. J. Chloupek, and M.-H. Rei, J. Amer. Chem. Soc., 86, 1247 (1964). Yet the 13C shifts for the corresponding carbinols, -142 and -76, are very different: G. A. Olah, A. M. White, J. R. DeMember, A. Commeyras, and C. Y. Lui, ibid., 92, 4627 (1970).

(12) Graduate research assistant on a grant (GP 31385) supported by the National Science Foundation.

Herbert C. Brown, Edward N. Peters
Richard B. Wetherill Laboratory, Purdue University
Lafayette, Indiana
Received October 2, 1972

Direct 6-Methoxylation of Penicillin Derivatives. A Convenient Pathway to Substituted β-Lactam Antibiotics

Sir:

The recent isolation and structure proof of the new β-lactam-containing antibiotics 1a-d from Streptomyces have aroused considerable interest, since these materials contained a functionality heretofore unknown in the general group of penicillin and cephalosporin compounds, namely a 7-methoxy group.1 The enhanced activity against Gram-negative bacteria of these new antibiotics encouraged us to develop a method for the direct, one-step introduction of a methoxy substituent at C-6 into the penicillin nucleus. Since a procedure for the conversion of penicillin to the cephalosporin system is now well established,2 access would thereby be obtained to methoxy-substituted penicillin and cephalosporin compounds. We report the first direct method for this transformation.

Our approach has been the generation of a reactive