Home :: Academic Members :: News

view:33367   Last Update: 2024-3-3

Jalal Ghasemi

J. Ghasemi and S.E. Razavi
On the finite-volume Lattice Boltzmann modeling of thermo-hydrodynamics
---
Abstract


In this paper, Thermal Finite-Volume Lattice Boltzmann Method is developed. To demonstrate the temperature field, the Double Distribution Function(DDF) of thermal lattice Boltzmann equation is used. The upwind biasing factors based on pressure and temperature are defined and applied as flux corrector in the thermo-hydrodynamic lattice Boltzmann equations. A consistent open and solid boundary treatment of flow is also addressed. The unknown energy distribution at the boundary cells are decomposed into its equilibrium and non-equilibrium parts. Then the non-equilibrium part is approximated with extrapolation of the non-equilibrium part of the populations at the neighboring nodes. This treatment enlarges the domain stability and led up to faster convergence. Two test cases namely, thermo-hydrodynamic in a backward-facing step and around a circular cylinder inserted within a backward-facing step are carried out. The results are compared with the available solutions in the technical literatures.

 

 

Copyright © 2024, University of Zanjan, Zanjan, Iran
master[at]znu.ac.ir