Home :: Academic Members :: News

view:41450   Last Update: 2024-1-30

Ebrahim Ahmadi

M. Ghasemnejad, E. Ahmadi, Z. Mohamadnia, A. Doustgani, S. Hashemikia, 
Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method
Abstract


Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer–Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration.

 

 

Copyright © 2024, University of Zanjan, Zanjan, Iran
master[at]znu.ac.ir