Home :: Academic Members :: News

view:25671   Last Update: 2023-2-10

Mir Ali Asghar Mokhtari

 Mokhtari, M.A.A., HosseinZadeh, G. and Emami, M.H.
Genesis of Iron- Apatite ores in Posht-e-Badam Block (Central Iran), using REE geochemistry
Abstract


Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatitebearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around the some of the iron- apatite deposits that are petrographically identified as include syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between syenites and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE- NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle forming sub-surface injections or surface flows. These ores have formed during magmatism as immiscible liquids (silicate and Fe-P-rich magmatic liquids) which separated from strongly differentiated magmas aided by a large volatile and alkali elements content. Separation of an iron oxide melt and the ensuing hydrothermal processes dominated by alkali metasomatism were both involved to different degrees in the formation of Posht-e-Badam Block iron- apatite deposits. We proposed that the separation of an iron oxide melt and the ensuing hydrothermal processes dominated by alkali metasomatism were both involved to different degrees in the formation of Posht-e-Badam Block iron- apatite deposits.

 

 

Copyright © 2024, University of Zanjan, Zanjan, Iran
master[at]znu.ac.ir