Home :: Academic Members :: News

view:45114   Last Update: 2021-9-11

Jafar Ghazanfarian

M.R.H. Nobari and J. Ghazanfarian
A numerical investigation of fluid flow over a rotating cylinder with cross flow oscillation

This paper studies a two-dimensional incompressible viscous flow past a rotating cylinder with cross flow oscillation using a finite element method based on the characteristic based split (CBS) algorithm to solve governing equations including full Navier–Stokes and continuity equations. Dynamic unstructured triangular grid is used employing lineal and torsional spring analogy which is coupled with the solver by an Arbitrary Lagrangian–Eulerian (ALE) formulation. After verifying the accuracy of the numerical code, simulations are conducted for the flow past a rotating cylinder with cross flow oscillation at moderate Reynolds numbers of 50, 100, and 200 considering different non-dimensional rotational speeds based on the free-stream velocity in the range 0–2.5, and various oscillating amplitudes and frequencies. Effects of the oscillation and rotation of the cylinder on the vortex shedding both in lock-on and non-lockon regions, the mean drag and lift coefficients, and the Strouhal number are investigated in detail. It is found that similar to the fixed cylinder beyond a critical non-dimensional rotational speed the vortex shedding is highly suppressed. In addition, by increasing the rotational speed of the cylinder, the lift coefficient increases while decreasing the drag coefficient. However, in the vortex lock-on region both the lift and the drag coefficients increase significantly.



Copyright © 2022, University of Zanjan, Zanjan, Iran