view:45475 Last Update: 2025-5-6
حسین عساکره و نرگس حسامی
ارزیابی کاربرد مدل های شبکه عصبی مصنوعی و SDSM به منظورشبیه سازی دمای کمینه و بیشینه ایستگاه اصفهان Assessing the Application of Artificial Neural Networks and SDSM Models to Simulate the Minimum and Maximum Temperatures at Isfahan Station
|
با توجه به تغییرات اقلیمی و گرمایش جهانی، پیشبینی دمای بیشینه و کمینه که از مهمترین پارمترهای اقلیمی است، فرصت مناسبی را برای برنامهریزی و ارائه تمهیدات لازم در اختیار برنامهریزان قرار میدهد. در این پژوهش با استفاده از مدل ریزگردانی آماری دینامیک (SDSM) و مدل ریزگردانی براساس شبکه عصبی مصنوعی (ANN) بیشینه و کمینۀ دمای ایستگاه اصفهان شبیهسازی شد. در این راستا از دادههای مرکز ملی پیشبینی محیطی (NCEP) به عنوان متغیرهای پیشبین جهت واسنجی و ارزیابی مدل استفاده شد و از دادههای HadCM3 تحت دو سناریوی A2 و B2 جهت شبیهسازی دمای کمینه و بیشینۀ ایستگاه اصفهان طی سه دوره زمانی 2016-2040، 2041-2070 و 2071-2099 استفاده شد. نتایج نشان داد که دمای بیشینه و کمینه طی دورههای یاد شده افزایش چشمگیری خواهند داشت. به گونهای که بر اساس سناریوی B2 و در هر دو مدل شبکه عصبی و SDSM تا سال 2099 نسبت به دوره پایه، میانگین سالانه دمای کمینه 38/2 و 22/3 درجه و دمای بیشینه 43/3 و 22/4 درجه سلسیوس افزایش خواهد یافت. بر اساس این پژوهش، مدل شبکه عصبی مصنوعی نتایج قابل قبولتری را نشان داد. |