خانه :: اساتید :: اخبار

بازدید:17191   بروزرسانی: 30-07-1398

Masoud Karbasi

Soheila Panahi, Masoud Karbasi and jaefar Nikbakht
Forecasting of Reference Evapotranspiration using MLP, RBF, and SVM Neural Networks
پیش‌بینی تبخیر-تعرق مرجع با استفاده از شبکه‌های عصبی مصنوعی RBF ،MLP SVM
چکيده


تخمین تبخیر-تعرق گیاه مرجع یکی از مهم‌ترین مؤلفه‌ها در بهینه‌سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش‌بینی تبخیر-تعرق مرجع روزانه و هفتگی می‌تواند در پیش‌بینی نیاز آبی گیاهان و برنامه‌ریزی کوتاه‌مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی MLP(پرسپترون چندلایه)، RBF (شبکه تابع پایه‌ای شعاعی)، SVM (ماشین بردار پشتیبان) در پیش‌بینی تبخیر-تعرق مرجع روزانه و هفتگی در ایستگاه همدیدی تبریز است. برای این منظور از داده‌های هواشناسی با دوره آماری 39 ساله (2009-1971) استفاده شد. برای آموزش شبکه‌های عصبی 80 درصد سری‌های زمانی ایجادشده به‌تصادف انتخاب و 20 درصد داده‌ها برای صحت‌سنجی مدل‌های پیشنهادی به کار رفتند. برای ایجاد سری زمانی تبخیر-تعرق مرجع روزانه و هفتگی در دوره موردنظر با استفاده از معادله استاندارد پنمن-مانتیث فائو 56 محاسبه گردید. ترکیب‌های متفاوتی از داده‌های ورودی (تأخیرهای مختلف) مورد ارزیابی قرار گرفت. نتایج مربوط به پیش‌بینی روزانه شبکه‌های عصبی نشان داد شبکه عصبی مصنوعی SVM-RBF kernel با تأخیر زمانی M5 دارای RMSE و R2 به ترتیب برابر با 0/51میلی‌متر در روز و 0/92 بهترین عملکرد را داشت. همچنین نتایج مربوط به پیش‌بینی هفت‌روزه نشان داد که شبکه عصبی MLP با تأخیر زمانی M8 دارای RMSE و R2 به ترتیب برابر با 3/88 میلی‌متر در هفته و 0/95 دارای بیش­ترین دقت بودند.